4/EH-23 (iv) (Syllabus-2015)

2018

(April)

CHEMISTRY

(Elective/Honours)

(General Chemistry—IV)

(Inorganic, Organic and Physical)

(Chem-EH-401)

Marks : 56

Time : 3 hours

The figures in the margin indicate full marks for the questions

SECTION-I

(Inorganic)

(*Marks* : 18)

- (a) What is glass transition temperature of 1. a polymer? Discuss the structure and properties of tetrasulphur-tetranitride polymers.
 - Explain the following : (b)
 - more stable is (i) NaC₅H₅
 - (ii) NaC₆H₅ is more reactive than NaCH₂C₆H₅. (Turn Over)

⁸D/1775

:

3

3

than

What happens when ClF_5 and IF_7 are (c)hydrolyzed? Draw the structure and mention the number of bond pairs and lone pairs in ClF_5 and IF_7 molecules.

OR

- Write down the general properties of 2. (a) inorganic polymers. Discuss various structural aspects of silicones polymers. 3
 - Define hapticity of a ligand. Write down (b) the IUPAC name and discuss the structural aspects of $Li(CH_3)_4$ and $Fe(C_5H_5)_2$ organometallic compounds.
 - What are pseudohalogens? Why are (c) they so called? Describe the important characteristics of pseudohalogens.
- 3. (a) What is the function of ozone present in the troposphere? Explain how fluorocarbons tend to deplete the ozone layer. What is the effect of this depletion?
 - "Industrial wastewater *(b)* is polluted differently depending upon the industry from which it is obtained." Illustrate on this statement with suitable examples.

8D/1775

(Continued)

4

4

3

4

2

(3)

(c)Give a brief account on the method of disposal of radioactive wastes.

2

OR

- methods of **4.** (a) the various Discuss discarding solid wastes. What do you mean by anaerobic digestion of 3 biological wastes?
 - What do you mean by reverse osmosis? (b)How can it be used in the treatment of depollution of domestic wastewater? 2
 - Outline the various schemes and (c)guidelines of wastewater treatment. 3

SECTION-II

(Organic)

(Marks : 19)

- Identify the reactants/products in the 5. (a)1×3=3 following reactions : COOH
 - (i) ? + HNO₃ \rightarrow (CHOH)₄ ĊOOH CH₂OH $c = 0 + HCN \rightarrow ?$ (ii) (ĊHOH)3 ĊН₂ОН Glucose + H₂N---NH-

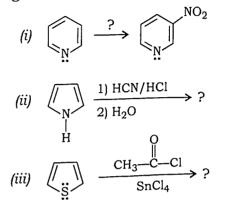
(Turn Over)

^{8D}/1775

(iii)

(4)

- (b) Draw the Haworth projection formulae of α -D-furctose and β -D-fructose. $\frac{1}{2}+\frac{1}{2}=1$
- (c) What is epimerization? How will you convert D-glucose to D-mannose? Give reactions.
 1+1¹/₂=2¹/₂
- (d) Discuss the classification of α-amino acids with suitable examples.2
- (e) Give one example each for the following : $\frac{1}{2} \times 2 = 1$
 - (i) Tranquilizers
 - (ii) Sulpha drugs


OR

- 6. (a) How is glucose converted to fructose? 2
 - (b) Give a method for the synthesis of phenylalanine. $1\frac{1}{2}$
 - (c) What is peptide linkage? Write the general structure of a tripeptide. $1\frac{1}{2}$
 - (d) Write a short note on isoelectric point of an amino acid. $1\frac{1}{2}$
 - (e) What are antibiotics? Give two examples. 2
 - (f) What is a biuret test? 1

8D/1775

(Continued)

(a) Complete the following reactions and give mechanisms (any two) : 1¹/₂×2=3

- (b) Describe Witt's theory of colour and constitution.
- (c) Give the synthesis of methyl orange. $1\frac{1}{2}$
- (d) Write notes on the following : $1\frac{1}{2}\times2=3$
 - (i) RM value
 - (ii) Iodine value

OR

- 8. (a) Draw resonance forms of furan. Why is furan less reactive than pyrrole towards electrophilic substitution reactions? 2¹/₂
 - (b) What is the difference between a fat and an oil?

⁸D/1775

(Turn Over)

(5)

(6)

(c) Complete the following reactions : $1 \times 3 = 3$

(i)
$$(i)$$
 (i) (i)

(ii) Benzaldehyde + N, N-Dimethylaniline

$$\xrightarrow{H_2SO_4}$$
?

(iii)
$$(\underset{H}{\overset{N}{\underset{H}{\longrightarrow}}} + CHCl_3 + KOH \longrightarrow ?$$

 (d) Name one azo and one triphenylmethane dyes. Draw their structures and also mark the chromophore and auxochrome in them. 1+1+1=3

SECTION-III

(Physical)

(Marks: 19)

- **9.** (a) What is hydrolysis? Derive an expression for the hydrolysis constant of a salt of a weak acid and strong base in terms of dissociation constant of a weak acid and ionic product of water. $3\frac{1}{2}$
 - (b) Explain how equivalent conductance and specific conductance vary with dilution.

(7)

- (c) Explain the following terms : $1\frac{1}{2}\times2=3$
 - (i) Buffer solution
 - (ii) Common ion effect

OR

- 10. (a) What are the salient features of the Arrhenius theory of electrolytic dissociation? Mention the limitations of this theory.
 - (b) Describe the moving boundary method for the determination of transport number of ions.
 - (c) What is meant by pH of a solution? Calculate the pH of—
 (i) 10⁻⁴ N aqueous HCl solution;
 (ii) 10⁻⁶ N aqueous NaOH solution. 1+1+1=3
- 11. (a) Give a schematic representation of an electrochemical cell, mentioning important sign conventions, taking suitable example of Zn-Cu cell. 3¹/₂
 - (b) Differentiate between electrochemical cell and electrolytic cell. 2
 - (c) What are meant by congruent melting point and azeotropes? Give examples. 2+2=4

(Continued)

3

⁸D/1775

(Turn Over)

3

(8)

OR

- 12. (a) What is upper critical solution temperature? Explain the phase diagram of phenol-water system.
 3
 - (b) Explain the following terms : 3
 - (i) Phase

- (ii) Degrees of freedom
- (iii) Components
- (c) Write the Nernst equation and calculate the EMF of the following cell at 25 °C :

Mg
$$|Mg^{+2} (0.001 M)||$$
 Cu⁺² $(0.0001 M)|$ Cu

Given,
$$E_{Mg^{+2}|Mg}^{\circ} = -2.37 V$$
 and
 $E_{Cu^{+2}|Cu}^{\circ} = +0.34 V.$ $3^{1/2}$

* * *

8D-3300/1775

4/EH-23 (iv) (Syllabu's-2015)